Campus:	Main campus
Faculty:	Faculty of Chemical Metallurgical and Polymer Engineering
Department:	Department of Chemical Engineering
OBE coordinator	Dr. H. M. Zaheer Aslam

Courses and SDGs mapping																		
		Society						Economy							viornm	Governance		
Sr #	Final Year Project Title	SDG 1 No Poverty	SDG 2 Zero Hunger	SDG 3 Good Health and Well being	SDG 4 Quality Educatio n	SDG 5 Gender Equality	SDG 6 Clean Water and Sanitatio n	SDG 7 Affordab le and Clean Energy	SDG 8 Decent Work and Economi c Growth	SDG 9 Industry, Innovatio n and Infrastruc ture			SDG 12 Responsi ble Consum ption and Producti on	SDG 13 Climate Action	SDG 14 Life Below Water	SDG 15 Life on Land	SDG 16 Peace & Justice Strong Instituti ons	SDG 17 Partners hips to achieve SDGs
1	Debottlenecking of VCM plant to increase production from 245 kT/A 400 kT/A								~				1					
2	Towards a Greener Future: Process Engineering and Design for Biomass- to-Biofuels Conversion									√		\checkmark						
3	Production of Diisocyanate for Biomedical Grade Polyurethane									~			~					
4	Cutting-edge Sustainable production of economically viable Propylene Oxide (PO)									~		~						
5	Production of Polyoxymethylene Dimethyl Ether for Diesel Blending from Methanol and Formaldehyde								~				~					
6	Integrated Production of Methanol and Acetic Acid through Synthesis Gas							~					√					
7	Production of Makeic Anhydride by Veba-Bayer Process									~			√					
8	'Catalytic Pyrolysis of Plastic Waste for thr production of Gasoline: A Circular Economy Concept								~				1					
9	Amination of Ethanol for Sustainable Acetonitrile Production									~		~						
10	Design of solar thermochemical water-splitting hydrogen production cycle using Zn/ZnO, for use in energy application						~	~										
11	Production of Methanol by CO2 as raw material												√	√				
12	Production of high density polyethylene using Phillips solution polymerization process								~	~								
13	Recycling of Waste Engine Oil into Base Oil by Acid Clay Method												~	~				
14	Towards Greener Production of Ethyl Acetate via AVADA Process							~					~					
15	Transportation and storage of hydrogen using liquid organic hydrogen carrier (LOHC)							~	~									
16	Methane production from renewable sources (Sabatier Process)								~			√						
17	Preparation of Oxali acid from molasses								~	~								

	Sustainable and Eco-Friendly production of Formaldehyde from methanol: Designing the future						~	~			
19											
20											
21											
22											